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Abstract

The boundary layer receptivity to free-stream acoustic waves in

the presence of localized surface disturbances is studied for the case

of incompressible Falkner-Skan flows with adverse pressure gradients.
These boundary layers are unstable to both viscous and inviscid (i.e.,

inflectional.) modes, and the finite Reynolds number extension of the
GoIdstein-Ruban theory provides a convenient method to compare the

efficiency of the localized receptivity processes in these two cases. The

value of the e._iciency function related to the receptivity caused by

localized distortions in surface geometry is relatively insensitive to the

type of instability mechanism, provided that the same reference length
scale is used to normalize the efficiency function for each type of

instability. In contrast, when the receptivity is induced by variations in

wail suction velocity or in wail admittance distribution, the magnitudes

of the related efficiency functions, as well as the resulting coupling

coefficients, are smaller for inflectional (i.e., RayIeigh) modes than
for the viscous Tollmien-Schlichting waves. The reduced levels of

receptivity can be attributed mainly to the shorter wavelengths and

higher frequencies of the inflectional modes. Because the most critical

band of frequencies shifts toward higher values, the overall efficiency of

the wall suction- and wall admittance-induced receptivity decreases with

an increase in the adverse pressure gradient.

1. Introduction

The pressure gradient in the external stream is

known to exert a significant influence upon the lami-

nar to turbulent flow transition within the boundary

layer. The experiments of Schubauer and Skramstad

(ref. 1), which for the first time established a firm
connection between the linear stability theory and

the transition process, demonstrated the strongly

stabilizing and destabilizing roles of favorable and ad-

verse pressure gradients, respectively, on the growth
of small-amplitude disturbances in the boundary

layer. Since then, this observation has also been

confirmed by results from other experimental and

theoretical investigations. Thus, to achieve reduced

aircraft skin friction drag by delayed transition to
turbulence, a favorable pressure gradient needs to be

maintained over most of the wing surface. This ob-

servation forms the basis for the design of the natural

laminar fiow (NLF) wings (ref. 2), which have at-

tained transition Reynolds numbers of up to approx-
imately 15 × 106 during in-flight experiments. (See

ref. 3.)

Although the desired pressure distribution on an

NLF wing may be maintained at close-to.design con-

ditions, pockets of adverse pressure gradient can oc-

cur for off-design conditions such as high angles of

attack. In conventional wing designs, an adverse
pressure gradient region usually develops just down-

stream of the blunt leading edge. This region pro-

motes early transition and thereby substantially re-

duces the percentage of laminar flow over the wing.

Moreover, the complex interaction between separa-

tion induced by adverse pressure gradients and the
ensuing transition process can also have a detri-

mental effect on the overall performance of a low-

Reynolds-number airfoil. (See ref. 4.) Even in the

absence of separation, the adverse pressure gradi-
ent downstream of the blunt leading edge can sub-

stantially increase the amplitude of an instability

wave. (See ref. 5.) Thus, it is vital to understand the

characteristics of transition in boundary layer flows

that are subject to adverse pressure gradients.

The first systematic study appears to be the

works of Schlichting and Ulrich (ref. 6) and Pretsch

(ref. 7), who used high-Reynolds-number asymp-
totics to investigate the stability of Falkner-Skan

boundary layers at different values of the Hartree pa-

rameter _. An important characteristic of adverse

pressure gradient flows (8 < 0) is their ability, by

virtue of their inflectional profiles, to support the in-

viscid (i.e., Rayleigh type) instability as well as the
viscous Tollmien-Schlichting (TS) modes which dom-

inate the primary instability in a zero or favorable

pressure gradient boundary layer. Inviscid instability

is indicated by the nonzero asymptotes a _ aub,_ c

and w ---*O_ub,oc, as RS, _ _c along the upper branch
of the neutral stability curve, while pure TS in-

stability is indicated by the asymptotes ct--, 0 and

w --* 0. Here, the nondimensional instability wave



numbers_ andC%b,_c,the nondimensionalfrequen-
cies_ anda_ub,_c,andthefloatReynoldsnumberR**
are defined in terms of a reference length scale corre-

sponding to the local displacement thickness 6* and a

velocity scale corresponding to the local free-stream
velocity. The lower branch of the neutral curve

still involves viscous (i.e., TS) modes with _ _ 0
as R6. _ oc similar to the class of boundary lay-

ers without any inflection points. Of course, note
that the distinction between the viscous and inviscid

mechanisms is asymptotic in nature and valid only

in the limit of RS. --_ co; in practice, the instabilities
of the boundary layer are simultaneously influenced

by both of these mechanisms.

Wazzan, Okamura, and Smith (ref. 8) numerically

solved the Orr-Sommerfeld (OS) eigenvalue prob-

lem for the Falkner-Skan profiles and found that

high Reynolds numbers are required for the estab-
lishment of these asymptotic characteristics just re-

ferred to and hence, the practical utility of each in-

dividual asymptotic result is somewhat limited. The
numerical results also demonstrated the decrease in

the minimum critical Reynolds number and, more

significantly, the increase in the maximum stream-

wise growth rate when the adverse pressure gradient

strength increases. Saric and Nayfeh (ref. 9) refined
the quasi-parallel predictions of "Wazzan, Okamura,

and Smith by using a weakly nonparallel theory and

found that the corrected growth rates are some-

what greater than those based on the OS equation

alone. By neglecting the small nonparallel correc-
tions, Mack (ref. 10) used the e N methods based

on both an amplitude ratio and an amplitude den-

sit}, criterion to develop empirical predictions of the
transition Reynolds number as a function of the pres-

sure gradient parameter _ and the level of turbulence
in the free stream. The secondary instability of the

Falkner-Skan boundary layers in the presence of fi-

nite amplitude primary instabilities was studied by

Herbert and Bertoiotti. (See ref. 4.) A direct nu-
merical simulation of this same problem was devel-

oped by Kloker and Fasel (ref. 11) who found the

mechanism of fundamental resonance to be stronger
than the subharmonic secondary instability. Exper-
imental studies of the linear and nonlinear stabili-

ties of Falkner-Skan flows have recently been reported

by Wubben, Passchier, and Van Ingen (ref. 12) and

Watmuff (ref. 13); the results in reference 12 confirm

the linear stability predictions during the early stage
of the transition process. The effect of an adverse

pressure _adient on the amplification of an instabil-
ity wave in a more realistic configuration can also be
inferred from the theoretical prediction (ref. 5) of the

instability wave growth in the Leehey and Shapiro ex-
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periment. (See ref. 14.) In particular, Goldstein and
Hultgren (ref. 5) found that the acoustically forced

instability wave was amplified by a factor of approx-

imately 2.5 between the blunt leading-edge juncture

and the measurement station compared with a pre-
dicted decay for a zero pressure gradient boundary

layer.

The results of the latter two investigations (refs. 5

and 14) confirm the earlier prediction (ref. 15)
that adverse pressure gradient regions in nonsimilar

boundary layers were strong preamplifiers of bound-

ary layer disturbances for the noninflected profiles
farther downstream. However, the manner in which

an adverse pressure gradient can affect the mecha-

nisms by which these unstable disturbances are gen-

erated in the first place should also be examined (i.e.,

the receptivity stage which initiates the transition
process). Morkovin (ref. 16) first recognized the im-

portance of instability wave generation in a laminar

shear flow by its disturbance environment and coined
the term "receptivity" for this process. Early experi-

mental work on the receptivity of boundary layer flow

by Leehey and Shapiro (ref. 14), Kachanov, Kozlov,

and Levchenko (ref. 17), and Aizin and Polyakov

(ref. 18) and the numerical simulations by Murdock
(ref. 19) stimulated the interest of theoreticians in ex-

plaining the physical mechanisms of boundary layer

receptivity. The first significant breakthrough was

provided by the work of Goldstein. (See refs. 20-22.)
He showed that unsteady free-stream disturbances

excite the instability modes in a boundary layer flow

by a wavelength conversion process (ref. 23) that

accrues from rapid mean flow variations near dif-
ferent types of boundary inhomogeneities. Exam-

ples include the leading-edge region (ref. 20), down-

stream variations in surface boundary conditions

such as roughness elements (ref. 21), and a region

of marginal separation that is forced by a locally ad-

verse pressure gradient. (See ref. 22.) The acoustic
receptivity caused by a localized roughness element

was independently studied by Ruban (ref. 24) us-

ing high-Reynolds-number asymptotic methods sim-
ilar to Goldstein. (See ref. 21.) The general fea-

tures of the Goldstein-Ruban theory have since been

verified with the experimental observations of Aizin

and Polyakov. (See ref. 5.) The distributed receptiv-

ity caused by small-amplitude surface waviness was
studied by Zavolskii et al. (ref. 25) using a finite

Reynolds number approach based on the OS equa-

tion. Boundary layer receptivity is currently an ac-
tive area of research, as indicated in references 26 28

and the various papers in references 29 and 30, which

provide insight into the types of problems which have
been solved thus far.



Becauseof their proximity to the regionof in-
stability amplification,short-scalevariationsin the
surfaceboundaryconditionsconstituteanimportant
classofcatalystsin thereceptivityprocess;forexam-
ple,seethecomparisonwith leading-edgereceptivity
in references5 and21. In spiteof the variousforms
in whichthesenonuniformitiesappearin practice
(e.g.,variationsin surfacegeometry(refs.21,24,25,
and31),surfacesuctionvelocity,surfaceadmittance
(refs.32and33),andwalltemperature(ref.34)),the
basicmechanismof the receptivityprocessin each
caseis thesameasthat proposedby Goldstein.Ba-
sically,the unsteadyfieldproducedby the scatter-
ing of a free-streamdisturbanceby a localsurface
inhomogeneityinherits its temporalscalefrom the
free-streamdisturbanceand spatialscalesfrom the
sumsanddifferencesof all the wavenumbersfrom
the free-streamand surfacedisturbances;thereby,
theunsteadyfieldacquiresaFourierspectrumwhich
overlapsthat of theboundarylayerinstabilities.

With regardto the influenceof anadversepres-
suregradientonthereceptivityof a boundarylayer,
Goldstein,Leib, and Cowley (ref. 22) showed that

strongly adverse pressure gradients can provide an

additional receptivity mechanism by inducing rapid
mean flow variations in a local region of marginal

separation. The present paper examines the role
of somewhat weaker, but possibly larger scale, ad-

verse pressure gradients as modifiers of the receptiv-

ity which is induced by short-scale inhomogeneities
on the airfoil surface such as wall humps and suction

slots and/or strips. More specifically, the intention
is to clarify the differences between the generation

of TS waves and the inflectional instabilities by this

latter class of receptivity mechanisms. Attention will
be focused primarily upon the receptivity caused by

localized and suitably weak surface nonuniformities
that involve short-scale variations in the surface suc-

tion velocity, surface admittance, or surface geome-

try (more detailed discussion in section 3). "Varia-
tions in surface suction and surface admittance are

relevant to suction surfaces that are used in laminar

flow control (LFC), but irregularities in shape can be
found on the surface of almost any airfoil. Because
such nonuniformities can occur well downstream of

the leading edge (i.e., close to the region of instabil-

ity), they are particularly detrimental to maintain-
ing laminar flow. Receptivity mechanisms related to
these surface perturbations were first identified by

Goldstein (ref. 21), Ruban (ref. 24), Kerschen and

Choudhari (ref. 32, details in Choudhari (ref. 33))

in the context of the generation of TS instabilities;
these references provide a more complete discussion

of the mechanisms by which energy is transferred to

the instability wave in each case.

Although the analyses of Goldstein, Ruban, and
Kerschen and Choudhari utilized the triple-deck the-

ory, which is an asymptotic approximation of the set

of Navier-Stokes equations in the infinite Reynolds
number limit, the Goldstein-Ruban theory can also

be generalized quite easily to finite, but moderately

high, Reynolds numbers. (See ref. 28.) Such finite
Reynolds number predictions have recently been pre-

sented by a number of authors, including Choudhari

and Streett (ref. 35), Choudhari (refs. 36 and 37),

Crouch (refs. 38 and 39), and Pal and Meyer (ref. 40).
However, note that a similar and completely equiv-

alent approach which utilized the concept of adjoint

eigenfunctions was first described in the Russian lit-

erature by Fedorov (ref. 41), and Tumin and Fedorov.

(See ref. 42.) The OS equation was also used by

Goldstein and Hultgren (ref. 5) in the context of re-
ceptivity problems. However, they used it to pre-

dict the amplification of the generated instability

wave; the receptivity was predicted by the triple-

deck theory of Goldstein (ref. 21) and Ruban. (See

ref. 24.) Formally, the triple-deck theory is only
applicable to TS instability modes near their lower

branch. However, Choudhari and Streett (ref. 35)

and Choudhari, Ng, and Streett (ref. 43) have indi-

cated that, by recasting this theory in terms of the

quasi-parallel stability equations (i.e., the OS equa-
tion in the incompressible case), a wider class of

boundary layer instabilities can be addressed such as

the unsteady Rayleigh modes in inflectional and/or

compressible two-dimensional boundary layers and
crossfiow vortices in three-dimensional boundary lay-

ers. Because of the presence of both TS and Rayleigh

mechanisms of instability in the present problem,

this finite Reynolds number adaptation seems par-

ticularly attractive for the investigation of the in-
fluence of an adverse pressure gradient on the re-

ceptivity mechanisms that are related to surface
nonuniformities.

In view of the numerous stability-related inves-

tigations described previously, the receptivity study

should naturally include the Falkner-Skan family of

incompressible boundary layers. These self-similar

profiles allow the pressure gradient to be varied in
a systematic manner and can be used with the as-

sumption of local similarity in order to predict the

receptivity of a more general class of boundary layer

flows (e.g., the recent work of Jiang and Caster
(ref. 44), which demonstrates that the stability of ar-

bitrary nonsimilar boundary layers can be predicted

with impressive accuracy by using the local similarity

principle). This paper concentrates primarily on
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acousticfree-streamdisturbancesbecause,in low-
speedflows,thereceptivityto acousticdisturbances
is an orderof magnitudegreaterthan the receptiv-
ity to convectedvorticaldisturbances.(Seeref.28.)
Thisresultwasoriginallyestablishedfor the_dscous
TS modesonly; however,whenbasedona qualita:
tive comparisonof the respectivesignatureswithin
theboundarylayer,theaboveconclusionis expected
to hold in thecaseof Rayleighmodesaswell.

Thetopicsof theremainingpartof thepaperare
asfollows.In section3, the finiteReynoldsnumber
approachis appliedto boundarylayerswith nonzero
pressuregradients.A detailedsetof numericalre-
sults,whichexpandsontheresultspresentedin ref-
erence43,andadiscussionofthedifferencesbetween
thereceptivitycharacteristicsin theviscous(TS)and
inviscid (i.e., inflectionalor Rayleigh)regimesarc
presentedinsection4.

2. Symbols

An asterisk(*) indicatesa dimensionalquantity,
asuperscriptbar ( ) denotestheFouriertransform
in thestreamwisedirection,andacaret(A)indicates
theprofileofaslowlyvaryingquantityat thelocation
of thesurfacenonuniformity.

Cu local coupling coefficient based on
maximum streamwise velocity fluctuation

across boundary layer

D differentiation operator along wall-

normal (Y) direction

Da desynchronization factor

_)a quantity related to desynchronization
factor

E eigenfunction for instability wave

F(j) spatial distribution of surface non-

uniformity of type j

f nondimensional frequency parameter,
*V*v3

fFS Falkner-Skan stream function, (eqs. (3.2))

L* streamwise length scale of surface

nonuniformity (associated with 5* for

computational convenience)

C* distance from leading edge to surface

nonuniformity

R Reynolds number based on free-stream
velocity U* at reference location
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t nondimensional time, L*

U (j) perturbation to mean streamwise

velocity because of stationary surface

nonuniformity of type j

U_c free-stream velocity at reference location

u* unsteady perturbation to streamwise

velocity

V(j) perturbation to mean surface-normal

velocity because of stationary surface

nonuniformity of type j

v unsteady perturbation to surface-normal

velocity

92*

X local streamwise coordinate, p-

X*

x slow streamwise coordinate, _-

x* dimensional coordinate in streamwise

direction

Y nondimensional surface-normal

coordinate, L*

y* dimensional coordinate in surface-normal
direction

a streamwise wave number nondimension-

alized by 5*

pressure gradient parameter (i.e.,

Hartree) in Falkner-Skan solution,

(eqs. (3.2))

5* local displacement thickness of mean

boundary layer

small parameter in perturbation series

r1 Falkner-Skan similarity

_/( C_*(x*)coordinate, y* 2 _ fl--y_i-a'*

A_ ) efficiency function based on amplitude of

strcamwise velocity fluctuation associated

with generated instability wave for

surface nonuniformity of type j

_* kinematic viscosity of fluid

steady stream function

unsteady perturbation to stream function

o2*L*

w nondimensional local frequency, U*

Subscripts:

ac acoustic (disturbance)



e local inviscid free stream

fs free stream (disturbance)

ins instability wave

lb lower branch of neutral stability curve

mg maximum spatial growth rate, location

or frequency

ub upper branch of neutral stability curve

ub, oc upper branch as_anptote as RS, --_ oc

w wall (disturbance)

0 zeroth-order solution for steady or

unsteady part of stream function

1 first-order perturbation to steady or

unsteady part of stream function

5" based on local displacement thickness of

mean boundary layer

Superscripts:

(j) type of surface nonuniformity:

j = 1 for wall suction variation
j = 2 for wall admittance variation

j = 3 for wall geometry variation

Abbreviations:

FS Falkner-Skan

LFC laminar flow control

NLF natural laminar flow

OS Orr-Sommerfeld

TS Tollmien-Schlichting

3. Summary of Finite Reynolds Number

Approach

The following discussion summarizes the applica-

tion of the finite Reynolds number approach to re-
ceptivity of adverse pressure gradient Falkner-Skan

boundary layers. As previously mentioned, a com-

plete description of the issues underlying a localized

receptivity theory has been given by Go]dstein in

his pioneering work (ref. 21), and the modifications
involved in a finite Reynolds number approach are
discussed in detail in references 36-39. The latter

papers, in particular reference 36, provide detailed

comparisons of the finite Reynolds number predic-
tions with those based on Goldstein-Ruban theory

as well as with the recent experimental data of Saric,

Hoos, and Radeztsky. (See ref. 45.) For complete-

ness, the principal ideas of the finite Reynolds num-

ber approach are reiterated in this paper.

Consider the flow past a semi-infinite flat surface

which is inclined at an angle/37r/2 to the incoming

stream. (See fig. 1.) Negative values of/3 correspond

to positive angles of attack and, therefore, to a

decreasing slip velocity

u_(z*) = U_ff/(2-3) (3.1)

on the upper surface, where x = x*/f* denotes the.

distance from the leading edge, nondimensionalized
with respect to some reference length f* (identi:

fled later with the position of the surface inhomo-

geneity), and U_c is the free-stream velocity at the

reference location x* = f*. The boundary layer flow,

which develops under the adverse pressure gradient

corresponding to equation (3.1), is described by the
self-similar stream function

• ;(x*, y*)= V/(2- ]
(3.2a)

where y* is the coordinate normal to the surface,
u* is the kinematic viscosity of the fluid, and fFS(_)
satisfies

( }
S +fFSf_S+fl 1--IFs

fFS(0) = = 0 1f_s(0) f_s(co) =

(3.2b)

The cause of receptivity is assumed to be a local

nonuniformity of length scale L* on the surface at

a distance _* (_* >> L*) downstream of the lead-

ing edge. (See fig. 1.) In particular, the receptivity

produced by small but rapid changes in the mean

suction-blowing velocity, the surface admittance, or
the geometry of the surface will be considered. A

porous surface of nonzero admittance essentially sets

up an unsteady mass flux through the suction holes
when the surface pressure fluctuates as a result of

an incident acoustic wave. Therefore, direct specifi-

cation of the distribution of this unsteady mass flux

is more convenient than its computation from the

surface admittance distribution. Accordingly, with-

out any loss of generality, the streamwise distribu-
tions of the mean suction-blowing velocity, the un-

steady normal velocity, and the surface height above

its nominal position are assumed to be given by

e(1)U_F(1)(X), e_)uacF(2)(X), and ¢(:)L*F(3)(X),

respectively; the small parameters e0) (j = 1,2, 3) in-

dicate the amplitude of the local variation scaled

by the appropriate reference quantities indicated by

asterisks, and functions F(J)(x) characterize the



geometryof the variationin termsof the localco-
ordinateX = (x* - e*)/L*. Note that to provide the

necessary coupling between the free-stream distur-
bance and the instability wave, the surface distur-

bance len_h scale L* must be of the same order of

magaaitude as the local instability wavelength at the

frequencyunder consideration. (See refs. 21 and 24.)

The unsteady perturbation in the free stream is
assumed to be a low-amplitude acoustic disturbance

propagating parallel to the incoming stream and
varying harmonically in time at a frequency w*.

Because the acoustic wavelength is infinite in the

low-Mach-number limit, the outer unsteady motion
is simply a temporal modulation of the local mean

flow, and the unsteady slip velocity field is then given

by
u*(x*) = UacX3/(2-tS)e -i_*t" (3.3)

where Uac denotes the magnitude of the unsteady slip
velocity at the surface inhomogeneity location such

that efs - Uac/U _ << i.

By exploiting the presence of the two small am-

plitude parameters ew and efs in the problem, the
local motion near the surface inhomogeneity can be

expanded in terms of the dual perturbation series

_(J)_TI(J)fx Y)_(J) = WO(x,Y) +_w _1 ' '

- (J) / (J)'x .... iwt+ efs¢0(x,Y) e-iwt + tfsett, Wl / ,r)e

{2 0) - (3.4)+ 0 _fs' cw

where the stream function g,(J) (j = 1,2,3), wall-

normal coordinate Y, nondimensional acoustic fre-

quency w, and time t have been nondimensional-
U*/L* and L*/U* respectively.izedby U_cL*, L*, _cJ , i _,

Note that, even though the instability wavelength L*

varies by an order of magnitude through the fre-

quency range of interest, L* will henceforth be as-
sociated with the local displacement thickness _* for

computational convenience.

Observe that the streamwise dependence of each

term in equation (3.4) is indicated by either the lo-
cal X or the global x coordinate. Each term in

the perturbation expansion then represents a unique

combination of spatial and temporal scales that is

associated with the physical origin of that term.

Briefly, the zeroth-order term _0(x, Y) corresponds
to the unperturbed base flow (i.e., the mean bound-

dry layer motion in the absence of any perturbations)

which depends only on the global streamwise coordi-

nate x. The first-order perturbations _I 1) and ¢0

represent the steady but local and unsteady but

slowly varying signatures, on the above base flow,

induced by the surface inhomogeneity and the free-
stream acoustic wave, respectively. The first term
that exhibits unsteadiness as well as fast stream-

wise dependence and is, therefore, relevant to the

generation of instability waves corresponds to the

O_efs_)[""" term produced by the mutual interaction
i_ j

of the two first-order perturbations. In the case

of the wall admittance problem, the short-scale un-

steady field _2) is produced directly by the inter-

action of the O(efs ) free-stream disturbance with the

O'"'/e_z)_ wall admittance. Because none of the other
t../

quadratic terms (i.e., O(e_s ) and O[e_)] 2) produced

by the self-interaction of the two first-order pertur-
bations possesses the desired combination of spatic_

temporal scales, the receptivity problem reduces to

solving for the stream function ¢I j) (X, Y) and/or ex-

tracting the part that corresponds to the unstable
mode.

An asymptotic approach would involve a further

expansion (singular perturbation) of each term in
equation (3.4) in terms of inverse powers (and some-

times logarithms) of the Reynolds number RO.. If
the interest is limited to the zeroth-order solution

for the instability wave amplitude, then the com-

putation of just the leading term in each of the

above expansions in terms of Rd. is sufficient. Thus,

the steady base flow q0(x, Y) is given by the non-
dimensional form of the Falkner-Skan stream func-

tion. (See eqs. (3.2a) and (3.2b).) In most sta-
bility applications, usually co << R_.; hence, the

acoustic signature field C0(x, Y) is governed by the

linearized form of the unsteady boundary layer equa-
tion. Vv'henever co satisfies the stronger constraint of

1/Rs* << co << Rd*, _)O(X, Y) is given by the Stokes

shear wai:6-to the leading orderi the higher or-
der terms can be obtained in the manner described

by Ackerberg and Phillips (ref. 46) and Goldstein,

Sockol, and Sanz (ref. 47), who studied the zero pres-
sure gradient case (i.e., _ = 0.0 in eq. (3.1)). In

general, the latter constraint is satisfied for both

TS and Rayleigh modes. However, as the results
of section 4.1 show, an exception is encountered

when fl = -0.1988 (i.e., the separation profile case)

wherein co << 1/R 8, along the lower branch. The

acoustic signature ¢O(x,Y) is quasi-steady in this
particular case. The complexity arises in the calcula-

tion of the short-scale perturbations _IJ)(x, Y) and,

especially, of ¢IJ)(x, Y), which can have different

asymptotic structures that depend on the particular



streamwiselengthscaleand/orfrequency.Forlength
scalesthat arerelevantto the generationof insta-
bility modesin the vicinity of the lowerbranchof
theneutralstabilitycurve,themeanflowperturba-
tionstI/_1)"and_3)"satisfythesteadyandlinearized
triple-deck(i.e., interactiveboundarylayer)equa-
tions. However,at largerwavenumbers,theseper-
turbationsaregovernedbyanoninteractivestructure
describedbySmithet al. (Seeref.48.)Similarly,the
unsteadyshort-scalefield_plj) (X, Y) is governed by a

linearized but inhomogeneous form of either the un-

steady triple-deck equations (ref. 49), quintuple-deck

equations (ref. 50), or a Rayleigh equation (possi-

bly inhomogeneous) supplemented by the inhomoge-
neous viscous equations for the region close to the

wall and in the critical layer; the choice depends on

the relative scaling of the frequency parameter w and

the local Reynolds number R6,.

An alternate path, which is similar to that taken

in the conventional studies of boundary layer stabil-

ity (refs. 8 and 10 quoted earlier) and in some recent

studies of the receptivity phenomenon (refs. 35-41),
exploits the well-known disparity between the length
scales g* and L* of the base flow and the instabil-

ity wave, respectively, at sufficiently high values of

the Reynolds number R6,; at the same time, the

method treats R 5. as a finite quantity in order to ob-
tain a single set of operators that will be valid in all

asymptotic regions, at least, to the leading order of

approximation. Thus, by neglecting the streamwise

variations of the quantities kO0(x,Y) and ¢0(x,Y),

which depend only on the global streamwise coor-
dinate x, their respective profiles may effectively be

frozen at the wall inhomogeneity location x = 1. The
Stokes wave solution mentioned in the previous para-

graph turns out to be a convenient approximation
for w.'O(X, Y) in the finite Reynolds number approach

(refs. 36 and 37) except in the low-Strouhal-number

region (a_R6. _< O(1)) encountered at fl = -0.1988 as
discussed before. Both the mean and unsteady short-

scale perturbations ko_J)- and gz_J)" then satisfy the

usual equations of parallel flow disturbance, which

reduce to the Orr-Sommerfeld (OS) equation in the

Fourier transform space. (See refs. 36 and 37.)

Accordingly, Fourier transforms of the steady per-

turbations _1)" and _3)" are governed by the time-

independent form of the Orr-Sommerfeld equation

_ -

1 (D 2 _ a2)z_j) = 0
R6*

(j = 1, 3) (3.5a)

subject to an inhomogeneous boundary condition
that corresponds to a specified distribution of the

wall suction velocity

_1)(0) -- F(1)(°_) (3.Sb)
io

or to a nonzero horizontal velocity

D_ 3) (0) = - _g(0)T (3) (a) (3.5c)

Note that the boundary condition (eq. (3.5c)) arises

from the transfer of the no-slip condition from the

deformed surface position Y = e_)F (3) (X) to its un-

perturbed location Y = 0. The caret on _0 in equa-

tion (3.5a) and on ¢0 in equation (3.6a) below rep-

resents the profile of the respective stream function

quantity along the wall-normal direction at x = l;
the operator D and the primes denote differentiation

with respect to the wall-normal Y coordinate.

The unsteady scattered field _j)r satisfies the

inhomogeneous OS equation

- iw(D 2 - o2)_ j) + ia_Po(D 2 - o2)_ j)

-.io_g'_l j) - + ( D 2 - o2)2_ j)

= _io[_(D 2 _ a2)_J) - _o -l_t"_(J)]j (3.6a)

The inhomogeneous term on the right side of equa-

tion (3.6a) for j = 1 and j -- 3 arises from a temporal
modulation of the short-scale mean flow perturba-

tion • _J) by the acoustic signature ¢I j). (See ref. 28.)
In addition to the inhomogeneity in the differential

equation itself, _713) also satisfies the inhomogeneous

boundary condition

D_ 3) (0) = -_{(0)F --(3) (o) (3.6b)

that corresponds to a transfer of the no-slip condition

for the unsteady motion. Because changes in wall

admittance do not affect the mean flow, _2)" _= 0,

and consequently, the forcing term on the right side

of equation (3.6a) is equal to zero for j = 2. Thus,

unlike _1) and _3), the stream function _2) for

the wall admittance case satisfies a homogeneous

OS equation. The motion corresponding to _2)" is

directly driven by the unsteady velocity, which is



inducedby theacousticpressurefluctuationsacross
theporoussurfaceandis specifiedto beoftheform

@ (0) = = (3.6c)

Other than for equations (3.6b) and (3.6c), all of

the other boundary conditions on _I j) (j = 1, 2, 3) are

homogeneous in character.

The physical stream function t)l j) can be obtained

by evaluating the inverse Fourier integral

@_J)(x,Y)- 1 /_CeiaX_J)(c%Y)d a (3.7)

However, the extraction of just that part of _b_j)_ that

corresponds to the unstable TS wave is sufficient.
This part can be computed as the residue contribu-

tion to the inverse Fourier integral in equation (3.7)

from a pole singularity in _J)(a) at the wave number

Cqns that corresponds to the aforementioned unstable
mode. (See refs. 21, 36, and 37.) Thus,

= O,ins

e iainsX (3.8)

Note that the OS eigenvalue problem also admits a

number of other higher modes; however, these modes

are stable and, therefore, will not be considered

in the present analysis. After utilizing the linear

dependence of _J) on T (j), equation (3.8) leads to

the following expression in dimensional form for the
streamwise velocity fluctuation associated with the

generated instability wave (refs. 21, 36, and 37):

Zt*(J)_ v t) P(J)*'* _ (V" ,., #_ 5,,i(ainsX-._t)ins I.._.,Y, = _u _*ac_u_.-,_,*_o*/_

(3.9a)
where

c(J) (J)_(J) , . _ (J) ,--ew /" (,Sins), _ (W, RS*) (3.9b)

and Eu(t';,z, Rt_*) is the local instability eigenfune-
tion for the streamwise velocity perturbation, which

is normalized to have a maximum magnitude of unity

across the boundary layer. The factor C (j), which is

referred to as the "local coupling coefficient" (refs. 21

and 51), is essentially the transfer function that re-
lates the output of receptivity (i.e., the local ampli-

tude at X = 0 of the generated instability wave) to

its input (i.e., the local amplitude of the free-stream

acoustic disturbance). For the weak surface inhomo-

geneities considered here, C (j) is linear in the ampli-

tude of the inhomogeneity and, as seen from equa-

tion (3.9b), can be written in terms of the product of

a geometry factor f(J)(ains) and an efficiency func-

tion A(uj). The geometry factor corresponds to the

Fourier transform of the spatial distribution of the

wall inhomogeneity at the complex instability wave

number OLins. Conversely, the efficiency flmction A 0)

is independent of the details of the surface inhomo-

geneity and, hence, characterizes the local efficiency
of the receptivity process that results from an inter-

action between the particular surface and free-stream

perturbations being considered. Because the geome-

try factor is common to all three combinations of the
perturbations considered in this paper, the character-

istics of the receptivity process in each case may be

gleaned from examination of the variation of the effi-

ciency function A (j) with respect to both the position

R** of the surface nonuniformity and the frequency
w of the acoustic disturbance.

Note that the result of equation (3.9b) is valid

for all receptivity mechanisms involving weak surface

inhomogeneities irrespective of the type of method-

ology (asymptotic or finite Reynolds number) used

to solve the problem. Individually, the values of T (j)

and A(j) depend on the choice of the reference length

scale in the problem; however, their product (i.e., the

coupling coefficient C(uj)) does not. In this paper,

the local displacement thickness of the unperturbed

mean boundary layer was chosen as the reference

length scale (i.e., L* = 5*). However, a more ap-

propriate choice for the reference length scale might

well have been the local length scale of the generated

instability wave (i.e., L* = 5*/dins)- Had the latter

choice been made, the geometry factor T (j) and the

efficiency function A (j) in equation (3.9b) would be

multiplied by O_ins and 1/Oqns, respectively, for both
j = 1 and j = 2. The corresponding conversion fac-

tors for the wall geometry-induced receptivity (j = 3)

would be C_ins and 1/ai2ns , the latter term being differ-
ent than that for the cases of j = 1 and j = 2 to com-

pensate for the additional length scale dependence in
the definition of the normalized height perturbation

e(w3). To maintain consistency with the previous in-

vestigations (refs. 21, 36, and 37) as well as to con-
form with the general practice of using a boundary

layer thickness as the reference length scale in most

practical applications, 5* was adopted as the uniform

length scale at all values of the acoustic frequency pa-

rameter. However, keep in mind the aforementioned
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dependenceof the efficiencyfunctionvalueson the
choiceof 2" wheninterpretingthenumericalresults
presentedin thenextsection.

4. Results

As mentionedin section1, boundarylayersde-
velopingunder an adversepressuregradientcan
supportbothviscous(TS) andinviscid(inflectional,
orRayleigh)instabilities.Becausetheviscousmodes
occupythelowerbranchregionof theneutralstabil-
ity curve,their generationcanhavea greaterim-
pacton thetransitionprocess.However,thecritical
Reynoldsnumbersdecreaserapidly asthe adverse
pressuregradientincreases,and consequently,the
generationofinflectionalmodesbecomesincreasingly
morerelevant.Thus,thebasicobjectivesofthepara-
metricstudyareto understandhowthecouplingco-
efficientsrelatedto TS-modegenerationareaffected
bytheadversepressuregradient,to assessthemajor
differencesbetweenthereceptivitycharacteristicsin
theTSandinflectional-moderegimes,andto ascer-
tain thecauseof thesedifferences.

Tomeettheseobjectives,thestabilitycharacteris-
ticsof theFalkner-Skanboundarylayerswith/3 < 0
will first beexamined.In additionto providinga
backgroundfor the later discussionon receptivity,
thissectionwill generallyemphasizetheimportance
of finiteReynoldsnumbereffects.Resultsthat per-
tainto themeanflowperturbationsproducedbyvari-
ationsin thewallsuctionvelocityor thewallgeom-
etry will subsequentlybe described.As discussed
in section3, thesemeanflowperturbationsprovide
thespatialmodulationrequiredfor generationof in-
stabilitywaves;their propertiesin adversepressure
gradientflowswill beexamined.Finally,theresults
onreceptivitywill bepresented,andthedependence
oftheefficiencyfunctionA(uj) on frequency, Reynolds

number, and pressure gradient parameter will be ex-

plored in detail.

4.1. Stability Characteristics Under
Adverse Pressure Gradients

Figure 2 shows the streamwise growth rate

-Im(ains) of the instability wave as a function of

the local Strouhal number co for/3 = -0.05, -0.10,
-0.14, and -0.1988. For each value of the pressure

gradient parameter, the growth rate variations are

displayed for Reynolds numbers ranging from low (for

which the finite Reynolds number effects cannot be

neglected) to high (which may not be very relevant

from a practical point of view, because the flow may'

already be turbulent, but which are more representa-

tive of the inviscid asymptote for inflectional modes).
Recall that the viscous and the inviscid modes are

not clearly identified at any finite Reynolds number.

However, because the inviscid upper branch scaling

corresponds to frequencies that are much higher than

those of the lower branch ones, most of the unstable

region can be expected to be basically dominated by
the inflectional mechanism, especially at sufficiently

high values of 1_1 and/or R_,.

The dominance of the inviscid mode can be

gauged by whether the upper branch neutral fre-

quency has become largely insensitive to changes in

the local Reynolds number. Thus, figure 2(a) sug-

gests that, for/3 = -0.05, viscous effects are still sig-
nificant at R_. = 2000. However, figures 2(b)-2(d)

show that for stronger pressure gradients, the in-

viscid neutral asymptote is nearly established at

R6. = 2000. The maximum growth rate at these lo-

cations as welt as the corresponding Strouhal number

comg still depends on R_* to a significant extent. The
reason for this dependence may be that the most un-

stable frequency aJmg lies in the viscous regime or in
the domain of overlap of the viscous and the inviscid

Rayleigh regimes.

Because the lower branch corresponds to predom-
inantly viscous modes, the associated neutral fre-

quency aJlb is dependent on the Reynolds number R_,
at all values of/3. However, one characteristic of the

viscous TS modes becomes apparent when the lower

branch frequencies are plotted against the Reynolds

number on a logarithmic plot. (See fig. 3.) Slopes of

the curves in figure 3 show that, for all pressure gra-

dients other than the separation case (3 = -0.1988),

colb _ R6 *1/2 for all sufficiently large R6.. , which cor-

responds to the regular triple-deck scalings. How-

ever, figure 3 indicates that, for /3 = -0.1988, Calb

decreases faster than R_-. 1, which implies that the
lower branch modes are quasi-steady. In spite of

this increase in the temporal scale, the streamwise

wavelengths of these instability modes remain suffi-

ciently short for them to still be classified as par-

allel flow instabilities to the leading order. Indeed,
Okamura, Smith, and V_razzan (ref. 52) had found

numerically that the neutral wave number alb varies

as R_-. 0"699 as R_. ---* ac at /3 = -0.1988, which was
quite different from the scaling derived analytically

by Hughes and Reid (ref. 53) for the corresponding

approximate Pohlhausen profile. The validity of the

quasi-parallel approximation in this paper implies
that the receptivity theory from section 3 can still

be used to predict the coupling coefficients but only

after the high-frequency Stokes wave approxima-

tion for the acoustic signature field (¢0) is replaced

by its quasi-steady counterpart because of the fre-

quency scaling (w << 1/R5,) along the lower branch
asymptote. Because a_ varies continuously from this



quasi-steadyasymptoteto O(1) values along the up-

per branch, the point where the Stokes wave approx-

imation for ¢0 becomes reasonable as 0: is increased

at a given Reynolds number is not easily determined.

In the intermediate range of w = O(1/R,5*), ¢0 is

governed by the unsteady linearized boundary layer
equations (refs. 20 and 46) and, therefore, has a

nontrivial dependence on the entire history of the up-
stream disturbance. To avoid the associated compli-

cations, the Stokes wave approximation was used for

¢0 throughout the calculations. Therefore, the recep-
tivity results are of questionable validity in a narrow

range of the frequency-Reynolds-number space when

/3 -* -0.1988. However, this is of minor significance
overall because the viscous instabilities are relatively

unimportant in the transition of the near-separation

profile. Moreover, the calculations of references 46
and 47 suggest that the Stokes wave solution may

be established at frequencies close to w = O(1/R6,),

i.e., well before the w >> 1/R_, asymptotic limit is

reached. Thus, in a practical sense the Stokes wave

approximation is likely to provide most of the sig-
nificant information concerning the receptivity of a

near-separation flow.

4.2. Characteristics of Mean Flow

Perturbations Produced by Variations in

Wall Suction and Wall Geometry

The characteristics of the mean flow perturba-

tions produced by wall suction and wall geometry
variations under adverse pressure gradient conditions

will be investigated next; recall that the receptivity
through the wall suction and wall geometry varia-

tions is determined entirely and in part, respectively,

by the scattering of the Stokes shear wave because
of the corresponding mean flow perturbation. As

described in section 3, the amplitude of the gener-

ated instability wave is determined as the residue of

the inverse Fourier integral for _J!_ be c&u_Se of the

first-order pole singularity of _J) at the instabil-

ity wave number C_ins. Accordingly, this is the only
wave number component of the mean flow perturba-

tion that has any significance from the standpoint

of receptivity. Because the imaginary part of Oqns

is usually small when compared with its real part,
the Fourier component of the mean flow perturba-

tion corresponding to O_ins can be approximately as-
sociated with the local flow response to sinusoidal

distributions of the wall suction velocity or waviness

(wall roughness) height with a wave number equal to
the real part of O_ins. The mean flow modification be-
cause of waviness of the airfoil surface or by suction

through regularly spaced suction strips is a problem

of significant practical importance; hence, the vari-
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ous aspects of the mean flow perturbations for the

specific case of t3 = -0.14 will be detailed.

First, consider the mean flow perturbations --lull),

V_1)" , and _1)" that are produced by the wave num-
ber component c_ = din s of the wall suction distribu-

tion. Figures 4 and 5 are plots of the profiles of the

magnitudes of vertical _1)" and streamwise _1)" ve-

locity perturbations, respectively, at/3 = -0.14. Fig-

ures 4(a) and 5(a) illustrate the profiles at a Reynolds

number of R6* = 500 and figures 4(b) and 5(b) at
R_. -- 5000. The four curves in each of figures 4(a),

4(b), 5(a), and 5(b) are associated with the local in-

stability wave number at frequencies equal to _lb/2,

CJlb , COmg , and a:ub at the Reynolds number under
consideration; the subscripts lb, ub, and mg refer to

the lower branch, upper branch, and the maximum

growth rate, respectively. The wall-normal location

that corresponds to the critical layer of the instability

wave at each frequency is also indicated by an x on
each of these curves. Recall that, as co varies from its

lowest (CJlb/2) to its highest (COub) value in figures 4

and 5, the wavelength of the instability wave and,
hence, that of the surface disturbance, decreases from

the value of the longer triple-deck scale to a value

comparable with the thickness of the boundary layer.
A detailed account of the influence of the length scale

of a surface disturbance based on the higher Reynolds

number asymptotic theory was given by Smith et al.

(ref. 48) for problems involving two-dimensional ob-
stacles on the airfoil surface. Their analysis will be

used to interpret the numerical results presented in
this section.

As a result of the reduction in instability wave-

length with an increase in value of the frequency pa-
rameter, the mean-flow perturbation also changes in

character from interactive to that driven by a viscous

layer close to the wall. This difference is reflected in

the shapes of the IV_)I profiles across the boundary

layer. (See fig. 4.) Thus, at a: = o.Jib/2 and _ = a_ib,
the unit normal velocity perturbation at the surface

gets amplified considerably across the main part of

the boundary layer before beginning to decay outside

of the boundary layer region. In accordance with

interactive (i.e., triple-deck) scaling, the extent of

this amplification is also seen to increase with an in-
crease in the Reynolds number. However, for suction

distributions with shorter wavelengths corresponding

to a: = Wrng and w = Wub, the resultant IVy1) t per-
turbation reaches a maximum at the surface itself

and decreases nearly monotonically into the bound-

ary layer region.



Unlike the profilesof the I-_1)]r perturbations,

profiles of the corresponding streamwise velocity per-

turbations ILY_I)["are qualitatively similar for all wave

numbers except a = amg for which the IU_I)t pro-

file has three peaks rather than two as in all other

cases. (See fig. 5(a).) However, the values of IU_I) I

change significantly as Ctins varies from Ctins(colb/2)

to O_ins(O;ub ). In the range of smaller (i.e., the

TS) wave numbers, a unit amplitude suction at the

surface produces a streamwise velocity perturbation

that increases with R$., whereas at the larger (i.e.,

the Rayleigh) wave numbers, the maximum value of

lull)t" remains comparable to the amount of applied

suction in the entire range of Reynolds numbers con-
sidered in this study. Because of the great differ-

ence between streamwise velocity perturbations in

these two cases, the ]U_I) I values at co = comg and

co = coub would have been almost zero on the scale

of figure 5(b); hence, they have been multiplied by a

factor of 10 in this figure. Consistent with the above

trend, lower amplitudes of pressure perturbation (not
shown here) were observed in the cases of large wave

numbers. Moreover, the pressure perturbation at the

larger wave numbers begins to slowly decay immedi-

ately away from the surface. This is unlike the re-

sponse in the range of smaller wave numbers, where
the pressure perturbation is nearly constant inside

the boundary layer and begins to attenuate only out-

side of this region.

Because of the large [UI1)I perturbations in the

TS-wave-number range, the unsteady forcing func-

tion in equation (3.6a) would be expected to be domi-

nated by the momentum transfer terms involving the
perturbation in the streamwise velocity. Because the

forcing term in equation (3.6a) accounts for the en-

tire suction-induced receptivity, the values of the ef-

ficiency function A (1) can be expected to be much

greater for the range of viscous TS modes than for

the range of inflectional instability modes. Although

the transverse gradients associated with the Stokes
wave become sharper in the frequency range of in-

flectional instabilities, they do not significantly alter
the above conclusion as is shown later in section 4.3.

The mean flow perturbations produced by weak

and nearly sinusoidal variations in the surface geom-

etry will be examined next for the same set of values

of O_ins, R_*, and fl as previously chosen for figures 4

and 5. In figures 6 and 7, respectively, the IV_3)I"

and lug3)l" profiles are plotted after normalizing them

by the local nondimensional amplitude of the surface

height variation. Because IV_3)[ = 0 at the wall in

this case, the maximum of the vertical velocity per-

turbation occurs at a finite distance away from the

surface. In the range of smaller (i.e., TS) wave num-

bers, this maximum occurs in the outer part of the

boundary layer region; at larger wave numbers, the

maximum shifts much closer to the wall and presum-

ably lies just outside of the thin viscous layer next
to the surface. Furthermore, at larger wave num-

bers, the tV_3)I" profiles also exhibit a significant de-

cay across the main part of the boundary layer.

The mean flow perturbations caused by the wall

geometry variation are effectively driven by a shear-

ing velocity at Y = 0, which arises from a transfer of

boundary condition to the unperturbed location of

the surface. (See eq. (3.5c).) Figures 6(b) and 7(b)
show that the effect of this shear is quite significant

in the entire boundary layer when the wave number is

small. However, at larger wave numbers, this bound-

ary perturbation is greatly attenuated across the vis-

cous sublayer close to the wall. Although IU_3)]" is

many times greater than IVy3)i" in this thin sublayer,

both IU_ 3) ] and tV_ 3)1 have comparable magnitudes

in the rest of the boundary layer. This also leads to

a significant variation in the pressure perturbation

_3)" across the boundary layer at these larger wave
numbers.

Similar characteristics of mean flow perturbation

caused by a wall geometry variation were noted at
values of _q other than -0.14. However, the overall

magnitude of the mean flow perturbation was a de-

creasing function of the adverse pressure gradient 13["

and eventually approached zero in the limit of the

separation profile. Of course, the linear assumption
is not valid in this limit, and mean flow separation is a

possibility even for small perturbations in the surface

height. Thus, the results for wall geometry-induced
receptivity in the case of /3 = -0.1988 should be

regarded mainly as qualitative indicators of the lim-

iting response expected under severely adverse pres-

sure gradients.

4.3. Efficiency Functions for Localized

Receptivity in Falkner-Skan Boundary

Layers

The pressure gradient effect on the efficiency func-
tion for each of the receptivity mechanisms will be
studied next. Recall that the admittance variation

does not produce any mean flow perturbation but

leads to a direct generation of instabilities through
the short-scale, unsteady mass flux across the porous

surface. (See refs. 32 and 33.) Thus, the effect of an
adverse pressure gradient on this receptivity process

will also be investigated.
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Theresultspresentedin this sectionincludethe
variationof the efficiencyfunctionA0")alongthree
differentpathsin theco-R_plane.First, thechange
in IA(J)tisexaminedastheacousticfrequencyis var-
ied whilethe wall inhomogeneityis heldat a fixed
location.In practice,thereceptivitysitesonanLFC
_ing arepartiallypredeterminedby thedesignpro-
cess(e.g.,at the jointsbetweentwoadjacentparts,
suctionstrips,and/orsuctionslots).Thus,to under-
standthe frequencydependenceof eachreceptivity
mechanismandto determinethe frequencieswhich
areexcitedmostefficientlyat a givenreceptivitylo-
cationwouldbeuseful.However,fromtheviewpoint
of LFC design,the efficiencyfunctionfor a distur-
banceof fixed(physical)frequencyis of greatestin-
terestbecausea typicaldesignobjectiveis to mini-
mizetheinstabilityamplitudesin themostunstable
bandof frequencies.Thus,thevariationin themag-
nitudeof the efficiencyfunctionsis consideredwith
respectto locationforfrequenciesthataremostrele-
vantto thetransitionprocess.Finally,thevariation
in ]A(uJ)t alongthetwoneutralbranchesisbrieflyex-
amined.Suchresultscanrevealusefulinformation
aboutthe asymptoticscalingof theefficiencyfunc-
tionsandmayhelpto mode]the receptivitystage
aspart of moresophisticatedtransitionprediction
methodswhichdependonunderstandingthe initial
amplitudesof boundarylayerdisturbances.More-
over,resultsforreceptivitycausedbydistributedsur-
facenonuniformitiescanalsobededucedquiteeasily
from the efficiencyfunctionvaluesfor localizedin-
homogeneityalongthelowerbranchof the neutral
stabilitycurve. (Seerefs.36,54,and55.) The re-
ceptivityalongthe upperbranchhaslittle practical
significanceof its own but is of interestbecauseit
typifiestheentireclassof inflectionalinstabilities.

_.3.1. Frequency dependence at fixed loca-

tion of surface inhomogeneity. First, consider
the frequency dependence of the efficiency functions

at a fixed location of the surface inhomogeneity. Fig-

ures 8 and 9 are plots of the values of IA0")[ as func-

tions of co for the wall suction (j = 1) and wall

admittance (j = 2) problems, respectively. In each

figure, data plots correspond to pressure gradients
of/3 = -0.05, -0.10, -0.14, and -0.1988. (Note the

different abscissa scales for different values of _q.) Ob-

serve that the values of both IA(ul)I and IA(u2)I decrease

monotonically (or very nearly so) as the frequency

parameter is increased, which suggests that the gen-

eration of the high-frequency inflectional modes by
these two mechanisms is inefficient in comparison

with the generation of the low-frequency viscous TS

12

modes. However, decreased efficiency does not nec-

essarily mean lower initial amplitudes in practice be-

cause the latter are also affected by the geometry

of the suction strips (eq. (3.9b)). The rather nar-

row suction strips used for typical laminar flow con-
trol may favor the inviscid modes. Also note that

both ]A(ul)t and IA(u2)[ decrease more rapidly with

co across the rather small band of viscous TS (i.e.,

low-frequency) instabilities than across the much
wider range of inflectional Rayleigh (i.e., relatively

high-frequency) modes. A comparison of the effi-
ciency function magnitudes for neutral frequencies at

R_. = 1000 for different values of fl indicates that the

efficiency function magnitude increases marginally
with the adverse pressure gradient in the TS case and
decreases somewhat in the inflectional-mode case.

The increase in [A_)[ (j = 1, 2) with -_ in the

TS range is also consistent with the asymptotic pre-

dictions of Kerschen and Choudhari (ref. 32) and
Choudhari. (See ref. 33.)

The triple-deck arguments in references 32 and 33
clearly show that the suction-induced receptivity

in the TS range of frequencies is dominated by

the transfer of streamwise momentum (i.e., the X-

momentum equation) from the first-order perturba-

tions _p[1)" and ¢0 to the short-scale unsteady field

_1)" containing the instability wave. The stream-

wise velocity perturbations are dominant in the range

of TS modes because the streamwise wavelengths of

these modes are much greater than the transverse
boundary layer length scale (i.e., the displacement

thickness _*). However, because the wavelengths of
the inflectional modes are of the same order as _*, the
vertical momentum transfer was investigated for its

importance during the generation of these instabil-

ity modes. Evaluation of the separate contributions

to lA(uJ)l from the X- and Y-momentum equations
showed that the role of vertical momentum trans-

fer is again quite insignificant. This probably re-
sults because the energ) _ transfer is localized in the

thin viscous layers close to the wail where all veloc-

ity perturbations are primarily in the streamwise di-

rection even in the range of predominantly inviscid
instabilities.

Note that in the case of receptivity from wall
suction or wall admittance variations previously

discussed, there was no qualitative change in the ef-

ficiency function curves as the adverse pressure gra-

dient was increased. However, when the receptivity
is induced by wall geometry variations (fig. 10), the

response of the efficiency function curve depends sig-

nificantly on the value of _. As seen in figure 10(a)



for _ = -0.05, theefficiencyfunctionIA(3)Iincreases
in magnitudealmostup to theupperbranchneutral
frequencyWub at both R_. = 500 and RS. = 1000.
However, with a further increase in RS. , the maxi-

mum value of the ]A(u3)l curve quickly begins to shift

toward lower frequencies and approaches the most

unstable frequency Wing at R_. --- 1500 and 2000.
Most likely, this is caused by a-slow onset of inviscid

mode dominance under a weak adverse pressure gra-

dient. The [A(3) l curve at _ = -0.10 displays a some-

what different response than that at _ = -0.05. In

this case, the maximum value of IA(3)I at RS. = 500

is already closer to _mg; however, at higher Reynolds
numbers, this maximum is replaced by a peak at

a much lower frequency. The IA(_3)I curve now dis-

plays a pronounced minimum between w = Wing and
w = Oaub. Figure 10(c) for /3 = -0.14 also shows a

roughly similar characteristic.

A comparison of figures 10(a)-10(c) also indicates

that the overall maximum value of the IA_J)t'^ curve

decreases, albeit rather weakly, with an increase of

and/or RS.. However, observe that a sudden in-
crease in the efficiency function value occurs in the

range of both low and high frequencies for the case of

the separation profile (fig. 10(d)). The low-frequency

(i.e., wry, <_ O(1)) results are of doubtful accuracy
because of the Stokes wave approximation for ¢0-

Nevertheless, the high-frequency results point toward

an increase in the efficiency of wall geometry-induced

receptivity under severely adverse pressure gradients.

As noted before, remember that the maximum rough-
ness height for which the mean flow perturbation can

be regarded as a linear perturbation of the upstream

flow decreases as the adverse pressure gradient in-
creases. At _ = -0.1988, even a minute roughness

can provoke local separation and invalidate this anal-

ysis in principle. However, refer to the remarks at the
end of this section in the same context.

Recall from the governing equations (3.6a)
and (3.6b) that the wall geometry-induced receptiv-

ity equals the sum of two separate contributions: the
first from the interaction of the Stokes wave with

the mean flow perturbation, which leads to the volu-

metric source term in equation (3.6a) and the second
from a direct scattering of the Stokes wave by the geo-

metric inhomogeneity, which leads to the inhomoge-

neous boundary condition for equation (3.6b). Both

of these contributions have the same order of magni-

tude in the Blasius case (refs. 36 and 37); whereas the
mean flow perturbation is zero to the leading order in

the separation profile case, and hence, the receptivity

there results entirely from the inhomogeneous bound-

ary condition. A comparison of these two contribu-

tions at intermediate values of the pressure gradient

parameter (fig. 11) reveals that, for frequencies closer

to _Olb where the instability is primarily viscous, the
contribution because of the mean flow perturbation

is small but still significant. However, at higher

frequencies which lead to shorter wavelength inflec-

tional instabilities, this contribution becomes quite
negligible relative to the contribution from equa-

tion (3.6b). This characteristic is completely con-

sistent with the theoretical prediction of Goldstein

(ref. 21) that the cause is the short-wavelength na-

ture of the inflectional instabilities, which dominate
the range of higher frequencies. As discussed in the

context of figures 6 and 7, the mean flow perturba-

tion decreases in amplitude as the length scale of the

surface disturbance decreases, whereas the thickness
of the Stokes shear wave decreases as the frequency

increases, which makes the same wall roughness ele-

ment appear taller in a relative sense.

Finally, note that because the mean flow pertur-

bation produced by a wall geometry variation be-

comes small as _ _ -0.1988, the receptivity in the

above limit is dominated by the direct scattering of
the Stokes wave. Therefore, it is quite possible that

the efficiency function results presented in this pa-

per would remain quantitatively satisfactory even at
= -0.1988.

_.3.2. Reynolds number dependence for

fixed-frequency disturbances. The efficiency

functions that correspond to an acoustic disturbance

of a fixed physical frequency are now considered. Fig-

ure 12 indicates the variation in the magnitude of

the efficiency function A (1) with respect to the wall

inhomogeneity location R_, for adverse pressure gra-
dients that correspond to 9 = -0.05, -0.10, -0.14,

and -0.1988. In descending order, the four frequen-

cies selected for each value of _ correspond to those
with amplification ratios of e 5, e 7, e9, and e ll be-

tween the two neutral locations. Thus, on the ba-
sis of the e9 criterion, the third highest frequency

at each _ is the one most likely to lead to transi-

tion. The lower branch, the upper branch, and the

maximum-growth locations at each frequency are in-
dicated on each curve in figures 12-14 by a triangle,

a circle, and a diamond, respectively. Note that be-

cause of the slow deceleration of the free stream, a

disturbance of fixed physical frequency does not cor-
respond to a constant dimensionless frequency pa-

rameter f = _*u*/U_ 2 as in the Blasius case but f

varies as flb(R5 ,lb/R_ ) as R_. varies. The values
of fl000 indicated in figures 12-14 correspond to the
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frequencyparameterf based on a reference Reynolds

number of RS. = 1000.

Two observations follow from figure 12. First, as

the adverse pressure gradient increases, the range of

amplified frequencies generally shifts toward higher
values. Consequently, the maximum value of the

I1(1) I curve corresponding to an instability wave with

a fixed amplification ratio decreases with an increase

in the adverse pressure gradient. At _3 = -0.14, the

maximum value of IA(_1)] is approximately 55 percent

less than the maximum value at a frequency that has

the same amplification ratio in the zero pressure gra-
dient case studied in references 36 and 37. Secondly,

the relative decrease in iA(ul) l between the maximum

growth rate location and the upper branch location
is rather insignificant when the pressure gradient is

weak but becomes quite large as the pressure gradi-

ent increases. As shown in figure 12(c), the efficiency
function at ,3 = -0.14 decreases in value at nearly a

constant rate as the wall inhomogeneity moves from

the lower to near the upper branch location.

As in the previous wall suction case, figure 13

shows that the efficiency function IA(_2) ] for the

wall admittance-induced receptivity also decreases in
value with an increase in the adverse pressure gra-

dient. Unlike IA(1)I, the overall shape of the IA(u2)l

curve is relatively unaffected by the precise value of

the pressure gradient parameter _q.

The efficiency function A(u3) for the receptivity

caused by a wall geometry variation is plotted in fig-
ure 14 for the same frequencies as those in figures 12

and 13. Note that the maximum value of the IA_)t

curve for an instability wave with a specified ampli-

fication ratio undergoes only a slight change as ]]31 is
increased from 0.05 to 0.10 in spite of the shift in the

instability band toward higher frequencies. More-
over, for wall hump locations upstream of the lower

branch, the efficiency function curve is almost a lin-

ear function of R_, at all values of ]¢_1. However,

the nature of receptivity downstream of the lower
branch location appears to be highly dependent on

the magnitude of the applied pressure gradient. Fig-
ure 14 also shows that, with increasing I_1, the overall

maximum of the IA_)I curve shifts from the upper
branch toward the lower branch location. Further-

more, in the limiting case of/3 = -0.1988 (fig. 14(d)),

the maximum magnitude of the efficiency function at
each of the chosen frequencies is significantly greater

than at any other value of/3.
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4.3.3. Variation along two neutral branches

and implications for distributed receptivity.

Figure 15 displays the variation in the magnitude of

the efficiency functions IA(uJ)l (j = 1, 2, 3) along the

lower branch of the neutral stability curve. The first

observation from figure 15 is that the slope of each ef-

ficiency function curve in the separation case is quite
different from that of a relatively moderatc adverse

pressure gradient. This is only natural because of

the different scaling laws for the instability wave fre-

quency and wave number along the lower branch of
the neutral stability curve at _ = -0.1988. (See

section 4.1.) Of course, as discussed in section 4.3,

the results for IA(1)t and IA(u3)l at _ = -0.1988

are to be regarded with caution because the Stokes
wave approximation was utilized to calculate these

quantities. The IA(2)[ curves (fig. 15(b)), which arc

independent of the Stokes wave approximation, in-
dicate that the efficiency function in the wall ad-

mittance case increases more rapidly with R6. at

= -0.1988 than at other values of the pressure

gradient parameter.

Also note in figure 15 that efficiency function

curves at _ = -0.05, -0.10, and -0.14 are nearly

parallel for each of the three types of surface inho-

mogeneities; IA(_')fand IA(_2)Iincrease as a function

of l¢_l, whereas IA_)t decreases somewhat with an
increase in the adverse pressure gradient. The high-

Reynolds-number asymptotes in the first two cases

(i.e., IA(1) t 1/2 [A(2) t 1/4O(R_, )) are also• : O(R_, ) and =
established at fairly low Reynolds numbers, some-

where in the range of R_, = 1000 to R_, = 2000,

depending on the precise value of the adverse pres-

sure gradient parameter. In contrast, figure 15(c)

indicates that the efficiency function larva)I in the

wall roughness case does not quite reach its asymp-

tote, Ia )l = even for Reynolds numbers as

high as 50 000, especially under severely adverse pres-
sure gradients. However, for RS, _> 5000, the dif-

ference between the analytical (i.e, triple-deck) and

the numerical predictions (refs. 21, 32, and 33) for

all three efficiency functions was generally less than

10 percent.

Previously (refs. 54 and 55), the receptivity

caused by distributed (i.e., nonlocalized) surface
nonuniformities was sho_m to be dominated by a

narrow range of locations near the lower branch of

the neutral stability curve. In the present context,

this implies that the receptivity in such cases is de-
termined by the TS-mode generation and that the

generation of Rayleigh modes is primarily relevant



to isolatednonuniformitieswithashorterstreamwise
lengthscale.The increasein receptivitycausedby
nonlocalizeddistributionsof surfacenonuniformities
is quantifiedby theequation

cu(J )
,array

OC

__ C_ins,lb _ T (j) (nCtw,lb)

C (j) _(J) (_ins,lb) _ n=l

[-- (nCtw'lb---_ 2ins'lb)2- (4.1a)
x exp [ iDc_

(refs. 56 and 57), which yields the ratio of the ef-

fective coupling coefficient (refs. 58 and 59) for an
array of compact equidistant nonuniformities to the

coupling coefficient in the case of a single such non-

uniformity whose shape is given by F(J)(x). Here,

a_,(Re*) - aw6*(R_.) denotes the fundamental wave

number of the periodic distribution; the quantity Da
is defined as

k, ng*,lb ,]De
(4.1b)

where the desynchronization factor Da is given by

2(, ' ) (4.1c)De - 2 - ¢_ °qns'lb -- aw'lb

in the present notation. The primes in equa-

tion (4.1c) denote differentiation with respect to R_,,
and the subscript lb indicates evaluation at the lower

branch location R_. = R_.I b. The desynchroniza-
tion factor is a measure of how rapidly the unsteady

forcing produced by the interaction between the free-
stream and surface disturbances becomes detuned

with respect to the phase of the instability mode.

In figure 16, the values of [Dal are plotted for the

values of/3 that are being considered in this para-

metric study. For comparison, the IDa[ curve for
the Blasius boundary layer has also been included in

this plot. The figure shows that, except in the case

of the separation profile, the value of ]De[ is rela-

tively insensitive to the value of/3. This implies that

the asymptotic scalings as well as other observations

made for the Blasius boundary layer (/3 = 0) in refer-
ences 54, 55, 58, and 59 are also valid in the context

of distributed receptivity in moderately adverse pres-

sure gradient boundary layers.

Now, the efficiency functions for the inflectional

(i.e., Rayleigh) modes will be studied from the per-

spective of their variation along the upper branch

of the neutral stability curve. (See fig. 17.) Ob-
serve that, despite the Reynolds number dependence

of both the mean flow perturbation and the Stokes

shear wave, the efficiency" functions IA(ul)l and [a(u3)[

are asymptotic to a constant at sufficiently high
Reynolds numbers just as was the efficiency func-

tion [At_)['_ in the wall admittance case which does

not depend on either the mean-flow disturbance or
the Stokes shear wave. The order in which the

high-Ra, asymptote is reached at any given pres-

sure gradient corresponds to IA(_2)l, IA(_I)I, and lA(_a)I.
The same trend was also observed along the lower

branch; hence, the finite Reynolds number effect ap-

pears overall to be the most significant in the case of
receptivity caused by the wall geometry variations.

However, for each type of surface inhomogeneity, the

finite Reynolds number effect diminishes uniformly

with an increasingly adverse pressure gradient. Thus,

the constant asymptotes for all three efficiency func-

tions are approximately valid for R_, > 5000 at

_q = -0.05, for R_. > 2500 at /3 = -0.10, and
R_. > 1000 at /3 = -0.14. In the case of the sep-

aration profile, the efficiency functions are almost

constant throughout the range of Reynolds numbers

investigated.

5. Summary and Concluding Remarks

A finite Reynolds number approach was used to

examine the influence of an adverse pressure gradient

on the efficiency of acoustic receptivity through lo-
calized surface disturbances that involve short-scale

variations in the wall suction velocity, wall admit-

tance, or the shape of the airfoil surface. The sta-

bility of boundary layer flows that develop under

adverse pressure gradients is governed by the vis-
cous TS mechanism at lower values of the frequency

parameter and/or Reynolds number (i.e., near the

lower branch of the neutral stability curve), whereas
the inviscid inflectional mechanism is dominant in

the remainder of the unstable region. Although re-
ceptivity in the lower branch region is usually more

important from a practical point of view, the possi-

bility of highly efficient excitation of the inflectional

instabilities cannot be ignored a priori. For prob-
lems of this type, the finite Reynolds number exten-

sion of the Goldstein-Ruban theory provides a par-

ticularly useful predictive tool because of its inherent

composite nature (i.e., valid for a combination of in-

stability regimes) and its flexible adaptation to the
different types of surface inhomogeneities. In addi-

tion, this particular extension of the theory can pos-

sibly capture some higher order terms in the asymp-

totic expansion based on R6. >> 1. However, in
practice, the overall accuracy of such a prediction

may not be significantly better than a leading or-

der asymptotic solution because the overall error may
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be dominated by the neg]ected O_[(_)[2Cfs_rr_ _ term in
_.1..I J

both cases. The Falkner-Skan family of self-similar

boundary layer profiles was chosen herein to system-

atically investigate the effects of an adverse pressure
gradient parameter. However, the overall trends en-

countered here are also expected to remain valid for

the nonsimilar boundary layers that are encountered

in practice.

The overall conclusion from the parametric study

is that the adverse pressure gradient reduces the

maximum value of the efficiency function that is re-

lated to the receptivity caused by wall suction or wall
admittance variation, but it does not significantly af-

fect the magnitude of the efficiency function related

to wall geometry-induced receptivity (except for the

increase seen under severely adverse pressure gradi-

ents). These trends appear to have their origin in the
high-frequency and short-wavelength nature of the
instabilities that are most critical for the transition

in adverse pressure gradient boundary layers. In the
wall suction case, the shorter wavelengths cause the

corresponding mean fiow perturbations to become

smaller in magnitude, thereby weakening the inter-
action with the Stokes shear wave that produces the

instabilities. Similarly, the efficiency of admittance-

induced receptivity decreases because the shortened

streamwise length scales and commensurately in-
creased unsteady vertical perturbation components

inside the boundary layer make any given magnitude

of the unsteady normal flux at the wall relatively

less effective in producing the instability wave. For

the case of wall geometry-induced receptivity, the
mean flow perturbation caused by a specified wall

height variation becomes weaker at larger wave num-

hers, but the maximum value of the efficiency func-

tion IA(uJ)l remains relatively constant as l_l is in-

creased and, in fact, IA_)I increases somewhat as

I_t becomes very large. This is because the wall
geometry-induced receptivity has a second compo-

nent that is related to a purely geometric interaction
of the Stokes shear wave with the local distortion

in the surface. This latter interaction is influenced

by two opposing effects; the reduced thickness of the

Stokes shear wave at high frequencies makes a surface

perturbation of fixed height appear relatively greater
and a weakened transmission of the horizontal ve-

locity perturbation (which arises from the transfer

of the no-slip boundary condition) to the boundary

layer region controlling the instability. The numeri-
cal results indicate that these two effects almost can-

eel each other and thereby keep the maximum value
_(3)

of i_u I almost constant for much of the _ range.
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The previous conclusions concerning the differ-
ences between the efficiency factors for viscous and

inviscid types of instabilities should not be extra-

polated directly to the actual amplitudes of these

instabilities in any given situation. Even when
the localized mechanisms considered here dominate

the overall receptivity process, the amplitudes of

the generated instability modes are determined not

only by the efficiency factor but also by the ge-

ometry of the surface disturbance and the fre-

quency spectrum of the free-stream disturbances.
Because the ranges of wavelengths and frequen-

cies for these two instabilities are quite different

even at finite Reynolds numbers, a specific wall

inhomogeneity will not necessarily have a spatial
spectrum that is nearly uniform across the entire

range of wave numbers. Similarly, the disturbance

environment is unlikely to have a relatively flat

spectrum in the range of frequencies corresponding
to both types of instabilities. Hence, more pre-

cise conclusions for initial amplitudes of the two
types of instability waves will necessarily depend

upon more specific information.

NASA Langley Research Center
Hampton, VA 23681-0001
November 15, 1994
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